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The aim of this paper is to prove various Kolmogorov's type criteria for spaces
of compact operators. We also present the results concerning strongly unique best
approximation. In particular we generalize some well known theorems from the
theory of minimal projections. As an application, we characterize SUBA projections
onto hyperplanes in /% and estimate the strong strong unicity constant in this
case.  © 1991 Academic Press, Inc.

0. INTRODUCTION

Let C(T) denote the space of all continuous, complex valued functions
defined on a compact set 7 with the supremum norm | |. For fe C(T)
and V< C(T) put

Py(f)={veV:|f—vl=dist(f, V)}.

If V is a linear subspace of C(T) then the classical Kolmogorov’s criterion
reads as

vePy,(f) if and only if for every welV
inf{re((f(t)—v(r)) - w(®)): teC(f—v)} <0, where
C(f—v)={teT: | f()—v(®) =/ —vll}- 0.1)

The above characterization of best approximants can be extended to the
case of an arbitrary Banach space. Namely, let W be a Banach space over
the field K (KK =R or KK =C) and let S(W*) denote the unit sphere in the
space W*. For we W put

E(w)={fecext S(W*): f(w)=lw]} (0.2)
and let for V< W
P,(wy={veV:|w—ro|| =dist(w, V)}. (0.3)
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Then we have

TueoreM 0.1 (see [2]). For every V< W the following conditions are
equivalent:

V is a sun (ie., for every we W, ve P,(w), and t>=0,

vePy(v+ t(w—0o)); (0.4)
for every we W, ve P, (w) if and only if for every ueV
there exists f € E(w—v) such that re( f(u—v))<0. (0.5)

The similar result can be proved in the case of strong unicity. In order
to present it, let us recall that an element v € V' is called the strongly unique
best approximation (briefly SUBA) to we W if and only if there exists r >0
such that for every ue V

lw—ull = |w—oil +r flu—uvll. (0.6)

In [19, Theorem 2.1, p. 885] the following was shown:

THEOREM 0.2. Let we W\V and let V be a starlike set with respect to
ve V. Then the following statements are equivalent:

vis a SUBA to we W with a constant r >0 (0.7)

Jor every ueV re(flu—v))< —rllu—v| for some
feE(w—uv). (0.8)

It is clear that each convex set is a sun and a starlike set with respect to
each of its points, so the results presented above may be treated as the
generalizations of Kolmogorov’s criterion. However, in general, applica-
tions of them seem to be limited, because in many cases the form of the
points from the set ext S(W*) is unknown.

In this paper, applying the previously mentioned results, we prove some
criteria (Theorems 2.2, 2.3, 3.2, 3.5, 4.1, 44) in the case W=4(X, Y),
where (X, Y) denotes the space of all compact operators going from
a normed space X to a Banach space Y. These characterizations are
expressed in terms of the set ext S(Y*), which is more convenient for
applications. In particular, we generalize some classical results from the
theory of minimal projections (see Theorems 3.4, 3.5, 4.1, 4.4). On the other
hand Theorem 2.5 illustrates how to apply Theorems 2.2 and 2.3 in
concrete cases.

Now we briefly describe the contents of the paper. Section 1 contains
notions, terminology, and preliminary results. In Section2 we discuss
the general case of spaces of compact operators. In Section 3 we specialize



KOLMOGOROV’S TYPE CRITERIA 183

our results to compact operators from the space H#(C(T), C(T))
with discrete support. Section 4 deals with the case of sequence spaces
co T), 1(T).

1. PRELIMINARIES

During this paper, for a normed space X, we denote by S{X) the unit
sphere in X and by ext S(X) the set of all its extremal points. Given a
normed space X and a Banach space Y, both over the same field K (K =R
or K=C), we write 2" (X, Y) for the space of all compact operators going
from X into Y. The symbol Z,(X*, Y) stands for the space of all weak*-
weakly continuous compact operators from X* into ¥ endowed with the
operator norm.

Applying Goldstine’s Theorem we may prove the following

ProrosiTiON 1.1 (see [11, Example (0.2)1). The space A (X, Y) is
linearly isometric with the space L(X**, Y). This isometry, denoted by *, is
given by

L*f=lim Lxg, (1.1}
B
where Le A (X, Y), f e X**, and a net (xz)c X is so chosen that xz;— f
weak™® in X**.
The next theorem plays a crucial role in our investigations.
THEOREM 1.2 (see [11, Theorem 2.2(a)]).
ext S(LHXX*, V) cext S(X*)®ext S(Y*), (1.2}
where {(x* @ v*)(L)= y*(Lx*) for x*e X*, y*e Y*, and Le £(X* 7).

By Proposition 1.1, we immediately obtain

CoROLLARY 1.3. For each f € extS(H*(X,7Y)) there exist y*e
ext S(Y*) and x** eext S(X**) such that f(L)= (x**® y*}(L*) for every
Led (X, 7).

Remark 1.4, If Le #'(X, Y) is a finite dimensional operator then

L¥=3 f(x¥)-y; for feX**
1=1

where L= Y x*(-)-y:

i=1
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Now, following [7], we recall a notion of the support of linear operator.

DrerFNiTION 1.5. For X=C(T) and Le #(X, Y) let us set

F ={FcT: Fis closed and for every xe C(T'), Lx=0 if x|, =0}.

The smallest, in the sense of inclusion, set Fye # is called the support of
the operator L (we write supp(L) for brevity).

The existence of such a set for every Le #(X, Y) was proved in [7,
p. 64]. If the supp(L) is finite, then the operator L is called discrete. The
set of all discrete operators going from X into Y is denoted by 2(X, Y)
2X)if X=7).

Now we present the notions and the terminology concerning sequence
spaces.

Given an arbitrary set T by ¢o(7'), written ¢, for brevity, we denote the
space of all functions x: T — [ such that the set {#: |x(#)| >e} is finite for
all ¢>0. The norm in ¢, is ||x|,, =sup{|x(¢)|: 1€ T'}. The space /,(T') con-
sists of all functions x: T'— K which are zero except on a countable set in
T for which x|, =2, 7 |x(#)] < oo. It is well known that the conjugate
space of ¢, can be isometrically identified with /,(7") (written /, for brevity)
and the conjugate space of [, with /., where

lo={x:T->Ksup{|x(t)l:te T} < +0}. (1.3)
We note that
ext S())={a-f,:teT,aclk, |a| =1}, (1.4)
where
ot 1
and
ext S(/,)={f: T—>K:|f(t)| =1 forevery te T}. (1.5)

By [12, Theorem 18, p. 274], the set ext S(/% ) has the following represen-
tation:

ext SUX)=cl{f:1e T}, (1.6)

where i(f)=f(t) for every fel_ and the closure is taken with respect to
the weak* topology in /% .
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At the end of this section we recall the notion of projection. If Y is a
linear subspace of a Banach space X, then a projection of X onto Yis a
bounded linear map P: X - Y such that Py =y for every ye Y. The set of
all projections going from X onto Y is denoted by #(X, Y). A projection
Pye #(X, Y) of minimal norm in 2(X, Y) is called a minimal projection.
Many applications of projections occur in numerical analysis and
approximation theory, for Px can be regarded as an approximation to x in
Y. The quality of this approximation relative to the best approximation is
governed by the inequality

lx — Px|| < [I—P| -dist(x, V)< (1 + || P]|)-dist(x, ¥) for xeX. (L7)

If X=C(T), by (X, Y, F) we denote the set of all projections such that
supp(P)c F.

If Y« X is an n-dimensional subspace we write J(X, ¥} for the set of all
interpolating projections, i.e.,

Pel(X, Y)ifand only if P= Y #,(-}-y, (1.8)
i=1

where 1,7, y;e Y fori=1,..,n
For a more complete list of information about projections the reader is
referred to [1, 4, 5, 7-10, 13-15, 17, 18].

2. GENERAL CASE

We start with the following

Lemma 2.1, Let X be a normed space and let Y be a Banach space, both
over the same field K (K=R or K=C). For Le X' (X, Y) put

crit(L) = {feext S(Y*): [| fo L] = || LI|}- (2.1)
Then the set crit(L) is nonvoid for every Le # (X, Y ).

Proof. Fix Le X (X,Y) and consider the function ¢(f)=|foL| for
f € S(Y*). We show that ¢ is weak* continuous on S{Y*). By the compact-
ness of L the space L(X) is separable and since f< L = f|,x,oL we may
restrict ourselves to the case when Y is separable. Following [12,
Theorem 1, p. 426], the space S(Y*) with the weak* topology is metrizable
in this case. Now suppose on the contrary that {f,} < S(Y*) tends weak*
to feS(Y*) and ¢(f,,— f)=e>0. Then (f,— f}Lx,)>¢/2 for some

640/64/2-5
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{x,} =S(X). By the compactness of L we may assume ||Lx,— y|| — 0 for
some ye Y. We note that

|(fo = I WLx,) < (o = )Lx, =y + (S = SY)
S2-(Lx, =yl +1(f = YD)

N
NI

for nzng;

then we have a contradiction. Applying the Banach-Alaoglu and the
Krein—Milman Theorems we complete the proof.

Now we prove the main result of this section.

THEOREM 2.2. Let X, Y be such as in Lemma 2.1. Assume V" < A (X, Y)
is a convex set. Let Ke A (X, Y) and Ve ¥". Then we have:

(a) VeP,(K) (see (0.3)) if and only if for every Ue ¥ there exists
y¥*ecrit(K— V) such that |re(y*-(K—UN| = ||[K~-V]|.

(by Visa SUBA to K in ¥ with a constant r >0 if and only if for
every Ue ¥ there exists y* e crit(K— V') such that

lre(y* (K= UNZK=V]|+r-|K-UJ.

Proof. (a) Fix Uev". Since |re(y*-(K—U))| =2 ||K— V]| for some
y¥*ecrit(K—V) Ve P, (K).

To prove the converse, assume that there exists Ue¥” such that
re(p* - (K—U))|| < | K— V| for every y* ecrit(K— V). Take an arbitrary
feE(K—V) (see (0.2)). By Theorem 1.2 and Corollary 1.3, f=x**® y*
for some x**ecext S(X**) and p*eext S(Y*). Following Goldstine’s
Theorem select a net (xg) < S(X) such that x; tends to x** weak™ in X**,
Since, by (1.1), re(y*-(K—V)x;z) tends to re(y*o(K—V)* x**)=
re((x** @ y*)NK—-V)) = re((f(K—V)), y*ecrit(K— V). Hence we have

re(f(U—V))=re(f(K—V))—re(f(K—U))
= |[K—= Vil —re(y*((K— U)* x*¥))
=[K-V| —lilgn re(y*((K— U)x))

z [|[K=V| = lre(y* (K—U))| >0.

Following Theorem (0.1), V¢ P,(K), a contradiction.
By the same reasoning, applying Theorem 0.2, we can prove part (b).

For X being a reflexive space we can show the following
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THEOREM 2.3. Assume X is a reflexive space and let ¥, ¥, K, V be such
as in Theorem 2.2. For y* e crit(K — V) put

Aye= {xeSX): y*(K—V)x)= K~ V]}. (22)
Then we have:

(a) VeP,(K) if and only if for every Ue¥ there exists y*e
crit(K — V) such that inf{re(y*(U—V)x): xe 4,.} <0.

(b) Visa SUBA 1o K in ¥ with a constant ¥ >0 if and only if for
every Ue V" there exists y* ecrit(K— V') with

inf{re(y*(U—~V)x):x€A,.} < —r-[[U~V|.

Proof. Assume V¢ P,(K). Then |K— Ul <||K— V| for some Ue¥ .
Take an arbitrary y*ecrit(K— V) and xe 4,.. Compute

re(y*(U—V)x)=re(y*(K—V)x)—re(y*(K— U)x)
Z[|K=V|—-|K-U|>0

and consequently inf{re(y*(U—V)x): xe 4,.}>0.

To prove the converse, suppose that inf{re(y*(U—V)x) xe A4} >0
for every y*ecrit(K— V) (the set 4 . is nonvoid by tne reflexivity of X).
Take an arbitrary f e E(K— V). In view of Theorem 1.2, f=x**® y* for
some y* eext S(Y*) and x** eext S(X**). Since X is reflexive, x** = x, for
some x e S(X). It is clear that y* ecrit(K— V') and x€ A4 .. Consequently
re(f(U—V))>0 and, by Theorem 0.1, V¢ P ,(K).

Applying Theorem 0.2, by the same reasoning we can prove part (b).

Remark 2.4. If X is an arbitrary normed space it may occur that the set
A, is empty. Take, for example, X = C ¥, the space of all real, 27 periodic
continuous functions, and let Y, be the space of all trigonometric polyno-
mials of degree <n. Put ¥ =2(X, Y,), the space of all projections going
from X onto Y,. It is well known (see, e.g., [3, p. 212]) that the classical
Fourier projection F, is minimal among all projections, which means
F,e P,(0). Following [17, Lemma 4.1], F, cannot attain its norm in any
point of S(X). Consequently for every y* e crit{F,) the set 4. is empty.

Now we apply Theorems 2.2(b) and 2.3(b) in the case when ¥ =
P, Yy, K=0 (" =1,({1,..,n})and Y is a hyperplane in /% ). In other
words we show when a minimal projection Py,e (/" , ¥) satisfies the
inequality

[P 2 1Pl +r-[P~Po|  forevery PeP(I7,,Y), (23)

where the constant r > 0 is independent of Pe (/" , Y.
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THEOREM 2.5. Let Y <l be a hyperplane; ie., Y=Xker f for some
f=U o feli=L0({1 .n}), |fl=1 Assume PoeP(I7,,Y) is a
minimal projection. Then we have:

(a) If |Pol =1, then Pq satisfies (2.3) if and only if |f;|=1/2 for
exactly one index i€ {1, ..,n}. The constant r=min{1—2-|f;|; j#i} is the
best possible.

(b) In the real case, if |Po| >1 then P, satisfies (2.3) if and only if
0<|fil<1/2 fori=1, ., n

Moreover, the constant
r=min{max{(1—2-|f;])-yi=1,.,n}: yeS(Y)}
is the best possible and there holds an estimation
rz(=2-14D-1f1/A=1fiD
where | f;| =max{|f;|: k=1, .., n} and

Ifil =min{|fi|: k=1, .., n}.

Proof. (a) Assume that |f;|>1/2 for exactly one index ie{l, .., n}.
Following [1, Lemma 1] each Pe 2(I” , Y) has the representation

Px=x—f(x)-y"=P,» for xel?, (2.4)

where y* el” satisfies Y7_, f;- y¥=1. Hence P— Py=f(-)-(y™ — y*) for
every Pe®(I",Y). It is clear that |P—P,|=y™— y"|l,. Since
|fi1 2172, |y =y o =17 —p7| for some j#i By [1, Theorem 1],
yi*=1/f; and ;=0 for j# i Consequently | P — Po| =|y;| for some j#i.
By Lemma 2 of [1], we note that

1P = (x> x;)e Pli= 11— f; - p] 1+ 1y]1- (1= 1 £])
21+ yf1-(1=2-1£1)
= [[Poll + min{1 —2-|fi|:k#i}-||[P— Py,

which gives the result.

Now we will show that the constant r =min{1—2-|f;|: j#i} is the best
possible. Since ||P;, | =P ;I for every fel} and yeker(f) (7= y; if
f:=0 and jy,=f/|f:|-y:; in the other case) we may assume f>0. Set
Ve=0,if ks#i and k#j, y,= —f;/f;, y;=1 and let y=(y,, .., y,) (the
index j is so chosen that f; =max{f,:k#i}). Let P=Py—f(-)-y. By
Theorem 2.2(b) and (1.4), it is enough to show that

[(x—>xg)oPll<l+r,-|P—Py]  forevery r,>randk=1,..,n



KOLMOGOROV’S TYPE CRITERIA 189

At first we note that ||P— Py|| = y| ., = 1. Following [1, Lemma 27,
I(x>xe)e Pl =11~ fi-yil+ 1yl -[1=fil  for k=1,.,n

So if k=1, then
[(x—=x)o Pll=|1=fi -y, + LN+ 1y + 1/l - 11 = fil
=1/fi—=1+y:-(1=2-f)
=1/f;i—1+f;-(2-f;i—=if:
<Ufi—1+(—f)-@2-fi=Df;
=2.-(1—-f)<l<l+r, - ||P—Py.

If ki and k # j, then yf = y, =0. Hence

[(x > xp)ePll=1<14r - [|P—Poll.
If k=, then

[(x=xg)e Pl =2=2-f;=1+4r-[P—=Pol <l+r,-|P—Pg.

Applying Theorem 2.2(b), we complete the proof of part (a).

(b} As in the previous case we may assume f; >0 for i=1, .., n. Let
us define a function ¢: S(Y)— R by the formula

#(y)=min{(2-f;—1)-y;ri=1, ., n}

Since f; >0 for i=1, .., n, #(y) <0 for every ye S(Y). Hence, by the argu-
ment of compactness and continuity of ¢, the constant y=max{d{y):
yeS(Y)} is negative. We show that P, is a SUBA to 0 in 2(/,, Y) with
r=—1v. To do this, following Theorem 2.3(b), (1.4), and Theorem (10) of
[7], it is enough to prove that for every Pe#(I" ,Y) there exists
ie{l, .., n} with

inf{((P— Py)x);: xe A,} < —r-|P— Py (2.5

(we write 4, instead of 4, _, ).

By (24), |P—Pol=11y" =yl Set y=(y"—y"VIy"—y"lo (f
y¥ =y the inequality (2.5) is satisfied). Select i€ {1, .., #} with ¢(y)=
(2.-f;—1)-y,. Following [1, Theorem 2 and Lemma 2], x€ A4, if and only
if x,=-—sgn(f)=—1 for j#i and x,=sgn{l—f;-y/°)=1. Hence, for
xX€A,,

(P=Po)x); =f(x)- 1y =yl o yi= 2 fi= 1) - i 197 = p™l
< =r-yf—y™
which by Theorem 2.3(b) gives the desired result.
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Now we will show that r>(1-2-f)-f,/(1—f;), where f; =max{f,:
k=1,.,n} and f;=min{f,: k=1,.,n}. To do this, take yeS(Y). If
yi=1 for some ke {1, .., n}, then

P2 fi—1<2-f,-1<2-f; = 1)- fi/(1 = ),

since f; <1/2 and f; < 1/2.
In the opposite case y, = —1 for some k€ {1, .., n} and an easy calcula-
tion shows that y, > f,;/(1 — f;) for some /€ {1, .., n}. We note that

<@ Si—-1)-y<Q fi-1)-f/A-F)<Q-f;-1)-fi/A = 1)

since f; < 1/2 and f; > f,.
Hence y<(2-f; —1)-f,/(1— f;) and consequently

rz(1=2-£)-£,/(1=1).

To prove that the constant r is the best possible, take r,>r, choose
yeS(Y) with ¢(y)> —r;, and define PeP(I”,Y) by P=Py+ f(-)-y.
For /e {1, ..,n} and xe 4, we have

(P=Po)x);=f(x) y;=2-fi=1) -y, 2(y)> —ri=—ri- | P= Pyl

Since 4;,=—A,_ _,, by Theorem 2.3(b), the proof of part (b) is fully
completed.

Remark 2.6. In the complex case Theorem 2.5(b) does not hold.

Proof. As in the proof of Theorem 2.5(b) we may assume f=0. It is
easy to show that the projection P, considered in Theorem 2.5(b) is mini-
mal in the complex case. By (1.4) and easy calculation 4, =a-4, ,, , for
every € C, |a] = 1. Hence we may restrict ourselves to the case a= 1.

Take we R"nS(Y) and let y=0+i-w. For L=f(-)-y, j=1,..,n and
xe A; we have re(Lx); =re(f(x)-y)=2-f;—1)-re(y;) = 0> —r-|y|
for every r>0.

Hence, by Theorem 2.3(b), P, does not satisfy (2.3) with any constant
r>0.

However, adopting the reasoning from [1, Theorem 2], we can show
that the conditions given in Theorem 2.5(b) are equivalent to the unique-
ness of minimal projection in the complex case.

3. CRITERIA FOR THE SPACE 4 (C(T))

During this section X'= C(T), i.e., the space of all continuous, complex
valued functions defined on a compact set 7 with the supremum norm. For
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FcT, by Ax(X) (A#(X) if F=T) we denote the space of all compact
operators going from X to X with supports (see Definition 1.5) contained
in F. For te T the symbol 7 stands for the evaluation functional.

We start with the following

LemMa 3.1, Assume that Ve A (X){0} and let card(supp(V)) < 0, ie.,
VeP(X). For {ecrit(V) (see 2.1) put

A,={xeS(X): (V)= |V} (3.1)
Then for every tecrit(V) and every {x,} = S(X) with (Vx,)t— |V |, there
exists {z,} < A, with ||z,— x,| =0 as n - .

Proof. Since Ve2(X), V=3%_,1(-)-y, where y,eX, t,eT for
i=1,.,k By the Tietze-Urysohn Theorem ||V| = |2, |y}l. Fix
tecrit(V), {x,}=S(X) with (Vx,)t— |V, and let 4= {ie{l,..,k}:
y;(£) #0}. Ar first we will show that x,(¢;) = y,(2)/| 7:(t)| = sgn(y,(¢)) for
i€ A. Since 35_, |y =3, 4 sgn(p:(1)) - ¥,(2), [x,(2))| > 1 for each ie 4.
Assume that for some i,e 4 there exists a subsequence (x,,) with

Isgn(y (1)) = X, (11X ()] | 2d >0 for k>k,.

By the uniform convexity of C over R,
13- (sgn(y (1) + X, (1) 1%, (t)) <16 forsome &>0.

Compute
1
3 (2 O+ T st v

ieA

D) !yi(f)|+%-(Sgn(yio(t))+xnk(fio)/|xnk(fi{))l)l'lyiom!

ie A\N{ip}

< Y @I+ a=8)- 1y, < V]

ie A\{ip}

But, passing to the subsequence if necessary, ¥, 4 (x,(2,)/1x,(¢)) - y:(t)
tends to || V] as k — oo; then we have a contradiction.
Now we construct the sequence (z,). For each ne N let us set

£, = max{|x,(1,) —sgn(y,(1))]: i 4}.

Fix ne N and for every i€ A select an open neighbourhood U, of ¢, such
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that U, n U, = @ for i # j and |x,(s) — x,(¢,)| <g,for se U;, ie A. Fix ie 4.
An easy calculation shows that for every se U,
re(x,(s)) € [re(sgn(y;(2))) — 2 -&,, re(sgn(y,(1))) +2-¢,]

and

im(x,(s)) € [im(sgn(y,(1))) — 2 - &,, im(sgn(y;(2))) + 2 - ,]
n[-1,1]=[D, E].

Let us set S; =a(U,)u {7,} and define for se S,

re(x,(s)), seo;(U)

Jis)= {re(sgn(y,-(sm, s=1,

and

im(x,(s)), sea(U))

g"(”z{im(sgn(yi(sm, s=t,

Following the Tietze—Urysohn Theorem, we can extend in a continuous
way the functions f; and g, on the whoie set U, such that f;(s)e [B, C] and
g; (s)e[D, E] for every se U,. It is easy to show that

I(fi +i-g)(s) —sgn(y:i(0)| <2-/2 ¢,

Let m;: By(sgn(y:(1)), \/2-2-8,) = Ba(sgn(y:(1), \/2-2-2,)0 B0, 1)
(By(x,r) = {yeC: |x — y| <r}) be a continuous function with
71| Bysantmionryo ao.y =14 (F=+/2-2&,). Put 2l =m0 (f, +i-g,). We note
that z7 is continuous, z7(z;) =sgn(y;(z)) and sup{|z*(s)|: se U;} = 1. Now
define a function z,: T — C by

{xn(s): s€T\Uiea U,

z,(s)= _

zHs): se U,.

Since for every i€ 4 and se a(U,) z,(s) = x,(s), z, is continuous. Moreover
|z, =1 and z,(¢;,) =sgn(y,(z)) for ie 4, which means that z,€ 4,.

To finish the proof, it is sufficient to show |z,—x,| = 0. Fix seT. If
se T\U;c4 U;, then |(x,—z,)(s)|=0. If seU, for some icA, then
1%n(8) = 2,(8)] < [x,(8) = x,(2)] + |x,(2;) — sgn(yA£))] + [sgn(y;(1)) — z,,(s)]
<2+ \/5 -2) - &,. But this gives that |z, —x,|| — 0, since ¢, — 0. The proof
is completed.

Now we will prove the main result of this section.
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THEOREM 3.2. Let v < Ax(X) be a convex set. Take Ke A (X), Ve,
and assume K— Ve D(X). Then we have:

(a) VeP,(K) if and only if for every Ue?¥  there exists
tecrit(K—V) such that inf{re((U—V)x)t): xe A,} <0, where A, is
defined by (3.1).

(b) VisaSUBA to K in ¥ with a constanit ¥ >0 if and only if for
every Ue¥  there exists tecrit(K—V) such thar inf{re(((U~V)x)t):
xed)< ~r U=V

Proof. (a) Assume that V¢ P,(K). Then there exists Ue 7" with
IK—~ Ul < || K~ V]|. Take fecrit(fK— V) and xe 4,. We note that

re((U—V)x)t)=re(((K—V)x)t)—re(((K— U)x)t)
z|K-V|—-K-U[>0

and consequently inf{re(((U— V)x)t): xe 4,} >0.

To prove the converse suppose that for some Ue?¥” and every 7e
crit(K— V) inf{re(((U— V)x)t): xe 4,} >0. Following Theorem 0.1 it is
sufficient to show that re(f(U—¥V))>0 for every fe E(K— V) (see (0.1)}).
So fix fe E(K—V). By Theorem 1.2 and Corollary 1.3, f=x**®7% for
some te T and x**eext S(X**). Applying Goldstine’s Theorem we may
select a net {x;} < S(X) tending weak* in X ** to x**. Following (1.1), we
note that

IK— V| =re((K—V)xp)t) > re(((K— V)* x**)1)
=re(f(K—-V))=[[K-V]|

and consequently 7 e crit(K — V).
Now let us set fz=x,®7 and observe that for every We X (X)

oWy =1W(xp)) = UW*(x**)) = (x** @ )(W*) = f(W).

Hence we may select a sequence {f,}< {f;} (f,=x,®1) such that
fAK=V) > f(K—-V)=|K-V]and f(U — V) = (U - V)x,)? >
f(U—V). Following Lemma 3.1, there exists a sequence {z,} < A, with
llz, — x,l = 0. It is clear that

(U=V)z,—(U—V)x,)t—0  which yields (U~ ¥)z,)t — f(U~ V).

Since for n=1, 2,..,z,€A4, and tecrit(K— V), re(f(U—-V))>0 which
according to Theorem 0.1 completes the proof of part (a). Applying
Theorem 0.2, part (b) can be shown in the same way.

Remark 3.3. Assume 7, #(X), K, V are the same as in Theorem 3.2.
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Assume furthermore that card(F)< +oo. Then the assumption K— Ve
%(X) is superfluous and Theorem 3.2 yields a complete Kolmogorov’s type
characterization of best approximants and SUBA elements in this case.

Theorem 3.2 yields immediately the following result:

THEOREM 34. Let Y X be its n-dimensional subspace and let ¢ =
P(X, YY) (see Preliminaries). Assume Pyoe P(X, YN D(X, Y). Then P, is
minimal in (X, Y) (resp. Py is a SUBA to 0 in P(X, Y) with a constant
r>0) if and only if for every Pe P(X, Y) there exists 1 ecrit(P,) such that
inf{re(((Py— P)x)t): x€A,} <0 (resp. <—r-|P—Py| in the case of
strong unicity).

Proof. Take K=0, V=P,, and note that crit(P,)=crit{—P,}. By
Theorem 3.2, we derive the desired result.

We note that Theorem 3.4 extends the result of Cheney (see [4]) proved
for Poe (X, Y) (see (1.8)) in the real case.

Now we apply Theorem 3.4 to generalize the other well known theorem
from the theory of minimal projections. At first we introduce some notions.

Let Yo X, dim(Y)=n, and let F= {t,, .., 1,}, t, #t;fori#jm=n+1
Assume furthermore that F is total over Y, ie, if ye ¥, y(1,)=0 for
j=1, .., m, then y=0. Since dim(Y) = n, we may numerate the points from
F in such a way that (¢,|y, .., 1,|y) form a basis of Y* Fori=n+1, .., m
put B,={1,.,n,i} and select for jeB, the numbers t/ such that
2jes |t/ >0and 3, p (sz"?j)leo- .

Let us assume Pe2(X, Y, F) (see Preliminaries), P=37_,7(-) u,
where u,eY for j=1,..,m For i=n+1,.,m define the functions vl
T-C by

vi(s)=3 1/-sgn(u,(s)) 3.2)

je B,

and the functionals ¢; by
=3 <, (33)
Then we can prove the following

THEOREM 3.5. (a) P is not a minimal projection in (X, Y, F} if and only
if for every ie {n+1, .., m} there exists y; € Y such that for every § € crit(P)

r%ii o) yi(s)— 3

i=n+1 jeBF

m

Z T'iv'J’i(S)

i=n+1

——Zlnu%#0>&

ject

(3.4)
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where BY={je{l,..,n}: u(s)=0}, Cf={je{n+1,.,m}: w(s)=0},
Zjer =0 (resp. ¥jccr =0) if BY = (resp. C7=).
{(b) Pisnot a SUBA t0 0 in P(X, Y, F) with a constant r >0 if and

only if for every i=n+1,.,m there exists y,€Y such that for every
Secrit(P)

e 3 0= 2| ¥ el T nen)> -

(3.5)

where L=Y"7 . ¢:.(:)- ;.

Proof. (a) Assume that condition (3.4) is fulfilled and let L=
> i1 @:(+)-y,. To prove that P is not a minimal projection, in view of
Theorem 3.4, it is sufficient to show that for each § e crit(P)

inf{re((Lx)s): xe A,} >0.

Let us denote for i=n+1,...,m, D,={jeB;: u;(s)#0} and E,=B\D,.
Fix secrit(P), xe A,, and compute

(Lx)s=- z ¢i(x)'yi=' Z ( T{'x(tj)+75'x(ti)>‘}’f

Y (T et smatyle)- X o (-x0) .

i=n+1 \jeD JjeE

PICRICE ORI RIe)

i vf(s)- yi(s)— Z ( i T{'}/i(s))‘(*x([j))

i=n+1 jer i=pn+1
- Z Tjj‘y]‘(s) '(‘x(tj))-
]eCf

Consequently, since | x|| <1, we obtain

09z 8 d©oe- L | T o

- T ) >0

jeC;

By Theorem 3.4, P is not a minimal projection in #(X, ¥, F).
To prove the converse, assume P is not minimal in 2(X, ¥, F) and
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choose Pye?(X, Y, F) with |Py||<|P|. By [6, Lemma2], we may
assuime

Po=P+ Y 4,(-)-y, forsome y,, .. yme’.

i=n+1

We show that the functions y, . {, .., ,, satisfy (3.4). Fix § e crit(P). By the
Tietze-Urysohn Theorem we may define a function xe S(X) with the
properties

sgn(y;(s)), u;(s) #0

-) = . fi ."—"1, ees
*() {—sgn(2;"=n+1rf-y,-(s)), uy(s)=0 CTI=he

and

sgn(u;(s)), u;(s)#0

; forj=n+1, .., m
—sen(t] -y () u)=0 7

x(t) ={

Observe that

m

(Ps= 3 x)uls)= T x()uls)= 3 ) =1P]

. : P P
j=1 Jjé¢B uCy

Calculating as in the previous part of the proof we obtain

m

((Po=P)x)s= 3. 0{(s) yi(s)
=X | X = Xyl

Since, following Theorem 3.4, re(((P,— P)x)s)) >0, the proof of part (a) is
fully completed.
The proof of part (b) goes on the same line, so we omit it.

Observe that in the real case if m=n+ 1 condition (3.4) reduces to

| ¥+ 1(9)] -<Df+1(S)-Sgn(yn+1(S))— ) If{;+1l) >0 (3.6)

. P P
jeB vy

which after dividing by [y,,.(s)| yields the result of Cheney (see [8,
Theorem 51).
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4. THE CASE OF SEQUENCE SPACES

Assume Y < ¢, (see Preliminaries) is an n-dimensional subspace and let
PYis-e ¥, be @ basis of Y. For Ke A '(cy, Y), K=37_, f:(:)-y; (f; €/, for
i=1,..,n)put

n

Ki(s, )= Z fi(s)-y (&) for s,teT. 4.1

As in the previous section for #e T the symbol 7 stands for the evaluation
functional. By [9, Lemma 1] and (2.1),

fecrit(K) if and only if ¢ is a critical point of the function
Ag: T—>R, defined by dg(s)=I27_; y:(s)-fill,=
ZuETIKK(u: S)I’ i'e'> AK(t)=Sup{AK(S): SGT} (the
symbol |-, denotes the norm in the space /). (4.2}

Using these notations we may prove the following

THEOREM 4.1. Let ¥ < A (¢q, Y) be a convex set and let Ke A (¢, V),
Ve . Then we have:

(a) VeP,(K) if and only if for every Ue¥ there exists fe
crit( K — V') with

re( X Koovloi)senlKe 4(50))= T 1Ky (500 (43)

seT se Ay

(b) Vev isa SUBA to K in v with a constant r>0 if and only if
Jor every Ue V" there exists fecrit(K— V) such that

re(z Ko (5, 0)-sgn(Kx_ o (s, z)))— S Ky (s 0l < —r-[U- V],

seT sEA;

(4.4)
where A, = {seT: Kx_,(s, t)=0}.

Proof. Assume there exists Ue ¥ such that for every fecrit(K— V),
(4.3) does not hold. In view of Theorem 0.1, it is sufficient to show that
re(p(U—V))>0 for every de E(K—V) (see (0.2})). Since A '(cy, ¥)
A (¢cy), by Theorem 1.2 and Corollary 1.3, ¢=y @y for some
Yreext S{cF*) and yeext S(c¥). Applying (1.4) and (1.5), we may assume
that Yy el (T), [¥(s)=1 for every seT and y=7 for some teT. Let
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K—Vv=3!_,f()y;, and U=-V=37_,8:(-) y; for some f;, g;€l;.
Following Remark 1.4 and (4.2) we note that

IK—Vi=$(K—V)=iK= VY y=3 0(f)-r:(t)

_ z (ﬁ}:rf,-(s) V) 5.(0)
-3 (3 0050

seT

< Y Kk_y(s )l =1K=V].
seT

It means that y(s) =sgn(Kx_ (s, 1)) if se T\ 4,. Compute

re(d(U— V))—re( Wig)- y(t))
3 (2 vt 8(5)) 30
~re( % o) (z 25 50)))

-
(

~te( X (o) Ko 1(1))
(

N

seT

l

re{ Y Ky_y(s,t)-sgn(Kg_y(s, 1))

seT

LY (=) Ko (s, z)>.

se A,

Since [re(Xsec 4, (—¥(s) - Ky (s, O SEsca, Ky »(s0)], re(¢p(U—V))
2re(Qser Ky_y (s, 1) -sgn(Kgx_y (s, 1)) —2se 4, 1Ky v (s, 1) >0. Following
Theorem 0.1, V¢ P(K).

To prove the converse, suppose V¢ P,(K) and choose Ue¥ with

NU—K| <||V—K]|. Let fecrit(K— U) be fixed. Define a function ¥ e/
by

_Sgn(KU—V(s’ t))a KK—V(Sa Z)ZO, KU*V(SS t)7é0

sgn(Kx_ (s, 7)), Ky _y(s,1)#0
Y(s
1

, in the opposite case.
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Let us set ¢ =y @ . Following [167], ¢ cext S(# (c,)). Observe that

= W) 0= X (£ A6 2t

i seT

3 v (Z ﬁ»(S)'yz-(t))

Il

Z |Kg_v(s, )= K—-V].
Hence ¢ € E(K— V) and, by Theorem 0.1, re(¢(U— V)) > 0. But

re($(U— V) =re ( S yis)- Ko yls, t))

seT

=re<z Ky _y(s,1)-sgn(Kg_p(s, 1) > Z Ky vls, 1)l

seT se A,

which gives the desired result.
Following Theorem 0.2, part (b) can be proved in the same way.

Remark 4.2. In the real case for' K=0 and ¥ =P(c, Y)
Theorem 4.1{a) was proved by a different method in [9, Theorem 1].

Now we present a similar result for the space #'({,, ¥). To do this, for
Kex'(,,Y), K=X7_, f:(:)-y;, where f;el for i=1,.,nand y, .., y,
is a fixed basis of ¥, put

KW, )= T ) 3t YelpbieT

Following the Banach—Alaoghlu and the Krein—Milman Theorems, and by
the definition of the space Z.(/**, Y) (see Proposition 1.1}, we note that
the set

= {Y eext(S(IF*)): K*(y) = | K} (4.5)
is nonvoid. Moreover
¥ € Cr if and only if Z Ky, t)=|K|. {4.6)

Using the above notations we can prove the following

THEOREM 4.3. Let ¥ = A ([,, Y) be a convex set and let Ke A ({{, ¥),
Ve . Then we have:

(a) VeP,(K) if and only if for every Ue ¥ there exists yeCx_,
such that
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re(Z Ko o, 0)-senKn_yo )= 3 Kooyl t)|)<0. 7)

reT te Ay

(b) Vis a SUBA to K in ¥~ with a constant r>0 if and only if for
every Ue ¥ there exists Y € Cx_ , with

re(z Koy 1)-sgn(Ke_ v ) — 3 Koy t)|)

teT te Ay

<-r- U=V, (4.8)
where A, = {teT: Ky _,(, 1)=0}.

Proof. (a) Fix Kex(l;,Y) and VeP,(K) Let K-V=
>t fi(+)- y;. Assume that for some Ue ¥, (4.7) is not fulfilled. Suppose
U-V=3" ,g() vy, and take ¢eEK—V) We show that
re(¢(U—V))>0. To do this, we note that following Theorem 1.2 and
Corollary 1.3, ¢ =3 ®y, where Y e ext S(I¥*) and y e ext S(I¥). By (1.5), we
may assume that ye S(/) and |y(¢)] =1 for every e T. Observe that

IK=Vil=¢(K—V)=y((K=V)*¥)

=v(i w(ﬁ)-y,-)= T 2(0)-K_ v (¥ 1)
i=1

teT

<Y Ke v OIS IK=V]

teT

By (4.6), Y € Cx_ . Hence y(t)=sgn(Kx_, (¥, 1)) if te T\A4,,. Compute
re(p(U—V))= re(? (Z ¥(g)- yi>>

—te( T 10 Ky o)

teT

re ( Y, Ko (b, 0)-sen(Ke_ (0, 1))

teT

~ Y Koy, z)-(—y(z)))

te dy

>re ( Y Koo (0 1)-sgn(Ke_ v (¥, 1))

teT

=Y Koy, z)l)>o.

te Ay

By Theorem 0.1, V¢ P, (K).
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Now suppose V¢ P, (K) and take Uey” with |[K—U| <|K~V].
Choose ' € Cx_, and define yeext(S(/,,}) by

sgn(Ky_ (¥, 1)), Kx v, 1) #0
) =< —sgn(Ky_ (¥, 1)), Ky v, t)=0and K, (4, 1) #0
i, in the opposite case.

Let ¢=y®y. Following [16], ¢eext S(K({,)). Observe that, by
Remark 1.4 and (4.6),

K~ V)= (z W)

=ZV(I)'KK—V(‘//>t)= Z |Kx_ v (i, 1)]

teT te T\Ay

=IK=VI.

Hence, by Theorem 0.1, re(¢(U— V')) > 0. But

re($(U— V) =1e ( S 90 Ku (0, z))

teT

=re(z Ky o)

teT

sen(Ke_ s )= 3 1Koy (0 r>|>,

i€ Ay
which gives the desired result.

By (1.6), Theorem (4) of [9], and similar reasoning as in Theorem 4.3,
we can prove the following

THEOREM 44. Let v =2P(l,,Y) and K=0. Assume furthermore that
dim(Y|,)=dim(Y) for every infinite set A< {teT: y(t)#0 for some
yeY}. Then Ve is a minimal projection (resp. a SUBA to 0 in ¥} if and
only if Theorem 4.3(a) (resp. Theorem 4.3(b)) holds true with yeCx_,
replacing §€ Cx_ ., where se T.

The above criterion for minimal projections in the real case has been
proved (by a different method) in [9, Theorem 5].

Note added in the proof. It is clear, by Theorems 0.1 and 0.2, that Theorems 2.2, 2.3, 3.2,
4.1, 4.3 and Corollary 3.3 hold true under the weaker assumptions on the set ¥".

640/64/2-6
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